
PROBLEM SET 2: Basic Thermodynamics

Problem set 2 can be attempted in Week 6 or 7 of Michaelmas Term. There is about one-and-
a-half tutorials or classes worth of material. The starred problem is more difficult.

Entropy Changes

2.1 In a free expansion of a perfect gas (also called a Joule expansion), we know U does not
change, and no work is done. However, the entropy must increase because the process
is irreversible. How are these statements compatible with dU = TdS − pdV ?

2.2 A mug of tea has been left to cool from 90◦C to 18◦C. If there is 0.2 kg of tea in the
mug, and the tea has specific heat capacity 4200 JK−1 kg−1, show that the entropy of
the tea has decreased by 185.7 JK−1. How is this result compatible with an increase in
entropy of the Universe?

2.3 Calculate the changes in entropy of the Universe as a result of the following processes:

(a) A copper block of mass 400 g and heat capacity 150 JK−1 at 100◦C is placed in a
lake at 10◦C;

(b) The same block, now at 10◦C, is dropped from a height of 100m into the lake;

(c) Two similar blocks at 100◦C and 10◦C are joined together (hint: save time by first
realising what the final temperature must be, given that all the heat lost by one block
is received by the other, and then re-use previous calculations);

(d) A capacitor of capacitance 1µF is connected to a battery of e.m.f. 100V at 0◦C.
(NB think carefully about what happens when a capacitor is charged from a battery.);

(e) The capacitor, after being charged to 100V, is discharged through a resistor at 0◦C;

(f) One mole of gas at 0◦C is expanded reversibly and isothermally to twice its initial
volume;

(g) One mole of gas at 0◦C is expanded adiabatically to twice its initial volume;

(h) The same expansion as in (f) is carried out by opening a valve to an evacuated
container of equal volume.

2.4 A block of lead of heat capacity 1 kJK−1 is cooled from 200K to 100K in two ways:

(a) It is plunged into a large liquid bath at 100K;

(b) The block is first cooled to 150K in one bath and then to 100K in another bath.

Calculate the entropy changes in the system consisting of block plus baths in cooling
from 200K to 100K in these two cases. Prove that in the limit of an infinite number of
intermediate baths the total entropy change is zero.

2.5 Two identical bodies of constant heat capacity Cp at temperatures T1 and T2 respectively
are used as reservoirs for a heat engine. If the bodies remain at constant pressure, show
that the amount of work obtainable is

W = Cp (T1 + T2 − 2Tf) ,
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where Tf is the final temperature attained by both bodies. Show that if the most
efficient engine is used, then T 2

f = T1T2. Calculate W for reservoirs containing 1 kg of
water initially at 100◦C and 0◦C, respectively. (Ans: 32.7 kJ.)
(Specific heat capacity of water = 4,200 JK−1 kg−1).

2.6∗ Three identical bodies are at temperatures 300K, 300K and 100K. If no work or heat is
supplied from outside, what is the highest temperature to which any one of these bodies
can be raised by the operation of heat engines?1

(Ans: 400K)

Thermodynamic potentials and calculus

2.7 [This question is just some bookwork practice and should only take a couple of minutes.]

(a) Using the first law dU = TdS−pdV to provide a reminder, write down the definitions
of the four thermodynamic potentials U , H, F , G for a simple p-V system (in terms of
U , S, T , p, V ), and give dU, dH, dF, dG in terms of T, S, p, V and their derivatives.
(b) Derive all the Maxwell relations.

2.8 (a) Derive the following general relations

(i)

(
∂T

∂V

)

U

= − 1

CV

[
T

(
∂p

∂T

)

V

− p

]

(ii)

(
∂T

∂V

)

S

= − 1

CV
T

(
∂p

∂T

)

V

(iii)

(
∂T

∂p

)

H

=
1

Cp

[
T

(
∂V

∂T

)

p

− V

]

In each case the quantity on the left hand side is the appropriate thing to consider for
a particular type of expansion. State what type of expansion each refers to.

(b) Using these relations, verify that for an ideal gas
(
∂T
∂V

)
U
= 0 and

(
∂T
∂p

)

H
= 0, and

that
(
∂T
∂V

)
S
leads to the familiar relation pV γ = constant along an isentrope.

2.9 Use the First Law of Thermodynamics to show that
(
∂U

∂V

)

T

=
Cp − CV

V βp
− p

where βp is the coefficient of volume expansivity and the other symbols have their usual
meanings.

1If you set this problem up correctly you may have to solve a cubic equation. This looks hard to solve but
in fact you can deduce one of the roots [hint: what is the highest temperature of the bodies if you do nothing
to connect them?]
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Thermodynamics of non p–V systems

2.10 For a stretched rubber band, it is observed experimentally that the tension f is propor-
tional to the temperature T if the length L is held constant. Prove that:

(a) the internal energy U is a function of temperature only;

(b) adiabatic stretching of the band results in an increase in temperature;

(c) the band will contract if warmed while kept under constant tension.

[You may assume that
(

∂L
∂f

)

T
> 0.]

2.11 For a fixed surface area, the surface tension of water varies linearly with temperature from
75× 10−3Nm−1 at 5◦C to 70× 10−3Nm−1 at 35◦C. Calculate the surface contributions
to the entropy per unit area and the internal energy per unit area at 5◦C.

[Ans:
(
∂S
∂A

)
T
= 0.167× 10−3 JK−1m−2,

(
∂U
∂A

)
T
= 121.3× 10−3 Jm−2]

An atomizer produces water droplets of diameter 0.1µm. A cloud of droplets at 35◦C
coalesces to form a single drop of water of mass 1 g. Estimate the temperature of the
drop assuming no heat exchange with the surroundings. What is the increase in entropy
in this process? (Specific heat capacity of water cp = 4, 200 JK−1 kg−1.)

[Ans: ∆T = 1.73K, ∆S = 13.6× 10−3 JK−1]

2.12 The magnetization M of a paramagnetic material is given by M = χB/µ0, where B is
the magnetic flux density and the susceptibility χ follows Curie’s law χ = C/T with C
a constant.

If the heat capacity per unit volume at constant M is cM = a/T 2, show that the heat
capacity per unit volume at constant B is

cB =
a

T 2

(
1 +

B2C

µ0a

)
.

If a sample is initially at temperature T1 in an applied field of flux density B1, show that
the temperature after adiabatic reduction of the field to zero is

T2 =
T1

(
1 + B2

1C
µ0a

)1/2
.
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