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PROBLEM SET 4 B1 Flows and Complexity 

1) Biological background 
  Brief answers are sufficient: 
a) What are DNA and RNA; what are they primarily used for in the cell? 
b) What is the (not brilliantly named) ``Central Dogma'' of modern biology? What functions do 

the molecular machines RNA polymerase (RNAp) and the Ribosome perform?  
c) How many gigabytes of information could one encode in human DNA? 
d) What are proteins & what do they do in cells? How many different kinds of amino acids are 

they made of?  How are they encoded in DNA? What is meant by a protein's tertiary and 
quaternary structure?  

e) What are some of the differences between eukaryotic and prokaryotic cells?  Use the 
difference between passive and active transport to explain why they differ in size. 

f) [FOR FUN]:  If a single amino acid weighs on average 110 Dalton (where one Dalton is the 
mass of an H atom, 1 amu), how long a strand of protein do you need before the set of all 
possible sequences would weigh more than the mass of the observable universe (estimated to be 
about 1053 kg)? The average length of proteins in our body is about length 479.  How many 
times the mass of the observable universe would the set of all possible sequences weigh? 

g) [FOR FUN] To get a sense of evolutionary time scales, it is useful to draw an analogy with 
human time scales.  Let’s say it is just about to turn midnight on New Year’s eve, and the earth 
was first formed on 1 Jan (4.5 billion years ago). Roughly when in the past year would:  1) Life 
first emerge (3.8 billion years ago)? 2) Eukaryotes first emerge (1.85 billion years ago)? 3) 
Animal life emerge (500 million years ago)? 4) Dinosaurs go extinct (65 million years ago)?  5) 
The first anatomically modern Homo Sapiens appear (200,000 years ago)?  6) Recorded human 
history? 7) First World War? 8) Birth of a typical undergraduate? (question adapted from Jack 
Miller, Daniel Fisher & PBOC)  

2) Random walks and diffusion 

Consider a random walk in one dimension along the x-axis.  With probability p the walker takes a 
single step of size δ to the right, and with probability q it takes a single step of size δ to the left, with 
p+q=1. 
a) Work out the probability that the walker takes n+ steps to the right, given that it took a total of n 

steps. 
b) For a symmetric walker where p=q, work out an expression for the mean square displacement 

<x2> where < > denotes an average over many realisations of the random walk.  What is the 
diffusion coefficient for this random walk? 

c) Use the handout from book Random Walks in Biology by Howard Berg, which describes how 
the binomial distribution reduces to a Gaussian in a certain limit,  to show under what 
conditions the expressions worked out in a) and b) reduce to the fundamental solution to the 
diffusion equation in free space:  
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3.) Freely jointed chains 
An ideal freely-jointed chain (FJC) consists of N rigid segments of length b, freely hinged where 
they join. Possible consequences of interference between different parts of the chain are neglected. 
(a) Using the links to a random walk, derive an expression for ⟨R2⟩, the mean square end-to-end 

distance for a FJC.  
(b) The corresponding result for a semi-flexible wormlike chain (WLC), which models a polymer 

as a continuous filament with a non-zero bending modulus, is  

"  
 

where L is the contour length and "  is the persistence length. Explain what the concept of 
persistence length means (a sketch may be useful). What is the relationship between persistence 

length and the Kuhn length?  Evaluate this expression in the limits    L ≪ "   and L ≫ "  (show 
your working) and comment on both results.   

(c) What is RE = (<R2>)1/2  for the human genome and for the genome of E. coli?  (the persistence 
length of DNA is 50 nm, or about 150 base pairs. How does this compare to the typical size of a 
nucleus in a human cell or the typical size of an E. coli cell?  Calculate the volume taken up by 
human DNA at close-packing. What does this tell us about the organisation of DNA in 
eukaryotic cells? Comment on how your result for the RE of an E. coli genome relates to the 
image below (made by the legendary Ruth Kavenoff). The bacterial wall was broken (by lysis) 
to expose the DNA.    
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(d) Write out an explicit expression for P(R,N),  the end-to-end probability distribution function 
for a FJC and and compare it to the probability distribution of a particle that undergoes a 
random walk.  In particular, what is the relationship between:  i) the time t for the particle 
and the number of segments N for the FJC and  ii) the particle diffusion coefficient and its 
analogue in the FJC?    

(e) Write down an expression for the partition function of the FJC in the case that a force f is 
applied between the ends of the chain, and in the z direction.  Show that in the low-force 
limit the chain behaves as a linear spring.   How does the spring constant vary with 
temperature? Explain the physical origin of this temperature dependence.                                                                               
Now show that in the large-force limit: 

and comment on your results.   

(f)   In the class we also derived a linear spring constant directly from the (unperturbed) 
probability distribution function P(R,N).  Compare this expression to the low-force and high 
force limits you just derived, and comment on your results.  In particular why does the high-
force limit differ, i.e. what goes wrong with the derivation from P(R,N) ?  
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(f) Calculate the cyclization probability (probability that ends fuse together) of a FJC by 
working out the probability that the two ends of the chain are within a distance δ<<RE.  
Comment on your results. 
[HINT: You can assume that P(R,N) is a constant for |R| ≲ δ] 

4) Noise in gene expression 

(a) A gene is transcribed to mRNA molecules, with a concentration R, that are in turn translated to 
proteins, with a concentration P. The concentrations can be described by the Langevin equations: 

"  

where the γR and γP are the degradation rates, and kR and kP are production rates and  ηR and ηP  are 
the noise terms. for the RNA and proteins respectively.  What are the typical time-scales for the 
degradation rates of RNA and proteins and why are they different? 
(FOR FUN: can you think of an equivalent particle system that would obey the same system of 
Langevin equations?) 

Derive the steady-state concentration of protein, P and comment on how it varies with degradation 
rates and production rates.  The scientific literature on this problem often defines an average burst 
size b = kP/γR. What does this dimensionless number describe? 

(b)In a classic paper, E. M. Ozbudak, I. Kurtser, A.D. Grossman and A. van Oudenaarden, Nature 
Genet. 31, 69 (2002), showed that the noise strength, measured by the variance σP2 in protein 
concentration P, takes the form:  σP2 =<P> (1 + b) where the Fano factor F= 1+b  measures the 
deviation from Poissonian behaviour. In the Appendix of this paper they sketch a derivation of this 
result. (The paper is available on the course website and well worth reading in full.) Go through 
their derivation equation by equation and explain what assumptions they make in each step. (note 
that there is a small error – for you to spot …).  In particular, show explicitly how to derive each 
step up to the equation for the steady-state value of the fluctuations in RNA concentration, and 
explain how the strength of the noise was fixed through a fluctuation-dissipation relation.  

To increase physical insight into their results, first briefly describe what a Poisson process is and 
how its fluctuations scale. Explain qualitatively why the fluctuations here are non-Poissonian and 
give a semi-quantitative argument for the origin of the factor b. [FOR FUN: Can you think of other 
systems that should exhibit non-Poissonian noise?] 

dR
dt

= kR −γRR+ηR(t)

dP
dt

= kpR−γPP+ηP(t)

<ηi (t) >= 0; <ηi (t)η j (t − t ') >= qiδ(t ')δij
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Describe the difference between intrinsic and extrinsic noise in gene expression.   How would you 
measure this in a cell? What kind of noise are Ozbudak et al., describing? 

(c) More challenging:  Use Fourier transform techniques to derive the full expression for the 
fluctuations in protein concentration  from the Langevin equations above, that is explicitly fill in all 
the missing steps in the derivation by Ozbudak et al..  Hint: you may need the identity: 

"  "   

5.) Statistical Mechanics of Optical tweezers. 

Briefly describe how an optical tweezer set up works.

The motion of the bead can be described by a Langevin equation.  Write this equation out 
for a bead of mass m in a trap of stiffness K, with a friction coefficient γ (you may assume 
that you are in the large friction limit so that the mass m can be neglected). The 
displacement x(t)  is measured as a function of time (left plot - taken from optical tweezers 
practical), and Fourier transformed to x(ω). This, in turn, allows us to obtain the power 
spectrum (right plot) which is proportional to |x(ω)|2.  The friction coefficient γ can be 
obtained independently by measuring the diffusion coefficient of the bead (give the 
relationship).  Show how to measure the trap stiffness K by writing out |x(ω)|2 in terms of 
the “corner frequency” fc=K/2π γ, and comparing to the right plot.

optical tweezers

laser beam and not with the stage. You can save movies in .AVI format. How low can the laser power
can go before the trap fails? How far into the tunnel can you trap beads?

4 Calibration of the trap and detector
In this section you will use Brownian Motion of trapped beads to measure the trap stiffness and to
calibrate the quadrant detector as a detector of bead position.

For small displacements the trap force is proportional to displacement and the trap behaves like a
linear spring. The mass of a trapped bead is negligible compared to the trap force and viscous drag,
and thus the frequency the response of the bead to a driving force is that of an over-damped harmonic
oscillator, the Lorenzian curve.

(displacement amplitude)2

(force amplitude)2 = constant ⇥
"

1 +
g2

k2 (2p f )2

#�1

where f is frequency, g is the viscous drag coefficient of the bead and k is the trap spring constant or
stiffness. The thermal driving force is Gaussian white noise — its amplitude is independent of frequency.
Thus the Lorenzian curve also describes the frequency power-spectrum of a trapped bead. (Note: a
completely flat power-spectrum corresponds to a delta function. The power-spectrum of white noise is
flat on a large scale, but with its own white noise if it is represented by a numerical spectrum of a finite
data sample. This noise is also present in the power-spectrum of the trapped bead). Typical Brownian
motion and a typical power-spectrum (log-log plot) of a trapped bead are shown in figures 4a and 4b.
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Figure 4

Finding the corner frequency, fc = k/2pg, gives the trap stiffness if the drag coefficient is known, or
vice versa. The advantage of this method is that the absolute displacement does not need to be known.

Brownian Motion can also be used calibrate the position detector. The Principle of Equipartition of
Energy for the average thermal energy stored each degree of freedom of the trap spring states that
1
2 khx2i = 1

2 kT, where x is the displacement of the bead and kT is the thermal energy. If the detector
signal is linear, X = bx, where b is the sensitivity. Thus if k is known, b is given by b2 = khX2i/(kT).

4.1 Experiment
Make a sample of 1 µm beads at 1:800 dilution. (It is best to make serial dilutions — e.g. 1:40 then

1:20 of that). The condenser iris should be set to about 0.3, which ensures that laser light from the
condenser roughly fills the face of the quadrant diode. Make sure the diode amplifier box is switched
on. Close the door and trap a 1 µm bead several microns from the coverslip as described in section 3.

Copyright c� 2015 University of Oxford, except where indicated. BP02-5
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6) Molecular Ratchet 

The translocating polymer of length L above has N = L/d  binding sites (coloured red) 
spaced a distance d apart.  On the inside of the membrane there are binding proteins that 
irreversibly bind to the translocating polymer, which locally (on lengths << than the 
persistence length, which in turn is much larger than the diameter of the proteins) can be 
treated as a rigid rod.   There is also a force F acting against the translocation of the 
polymer.     

(a) To analyse the molecular ratchet above, we introduce a probability p(x,t)dx of finding the 
last binding site to have crossed the pore at position (x, x+dx) at time t. Here x measures the 
distance from the pore.   Show that the flux of protein binding sites (number coming through 
per unit time) Jx (t) = v(t)/d is then given by

 

where the first term describes the drift, and the second term the diffusion.  This equation is 
subject to the boundary condition p(d,t)=0, because if the protein binding site reaches a 
distance d from the pore, then another binding site emerges from the pore and is now the 
new “last” site to emerge.  The old “last” site effectively disappears at this point. Solve the 
differential equation above in steady state (for a constant J = v d).

 (b) Next, use the normalisation condition 
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Computer simulations have become an indispensable tool in many areas of science. They can be used to
study systems that cannot be solved analytically. They can be employed as “computer experiments” to test
theories or to generate new theoretical concepts. They also permit access to levels of detail that are often
not accessible to experiments. For example, one has complete control over the initial conditions and can track
movements of all particles at all times. A domain where computer simulations have historically enjoyed much
success is the study of the properties of materials. Indeed, simulations of crystals and liquids were among the
first applications of computer simulation techniques. Molecular dynamics simulations of biomolecular systems
– including applications to a wide range of protein properties, such as details of molecular conformations,
transmembrane transport, and protein-ligand binding – are rapidly growing in importance [5].

Here, we will provide an introduction to the basics techniques and theory behind computer simulations. More
complete descriptions of background theory and key algorithms can be found for instance in [6, 1, 9, 11, 13].
Statistical mechanics is crucial for understanding the theory and techniques behind molecular simulations, and
some background knowledge is assumed in this chapter. Many textbooks cover this topic, including [4, 14].

Rapid increases in computer processing power, the emergence of new hardware architectures and simulation
algorithms that allow massive parallelization, as well as the development of novel simulation algorithms, together
with software packages that facilitate their use have greatly increased the complexity of systems that can be
simulated. However, the more di�cult the studied system, the more dangerous it becomes to treat simulation
software just as a black box. Without deeper understanding of the algorithms and methods employed, it is easy
to fool oneself.

Our aim is to provide a bit a better appreciation of what is going under the hood when such a simulation
package is employed. What are the approximations used? How do these impose limits on validity and appli-
cability? How do I know whether I can extract real physical insight, or have created nothing but a pretty,
but potentially misleading, picture or movie? Such questions must never be left aside if one wants to properly
distinguish bon fide predictions of real system behavior from simulation artifacts.

The most common techniques employed to study thermodynamic properties of systems of particles are
Molecular dynamics and Monte Carlo algorithms, which we briefly review. We then discuss some common
techniques for speeding-up simulations and overcoming free-energy barriers, and finally provide a list of some
of the popular simulation packages for biomolecular systems.

2 Molecular dynamics

Molecular dynamics (MD) simulations fundamentally just solve Newton’s laws of motion for a set of classical
interacting particles. This process generates time trajectories of particles in the simulated system that can
be visualized and used to measure non-equilibrium properties such as transport coe�cients or equilibrium
thermodynamic ensemble averages. For example, to measure the mean value of a quantity A of interest (such
as pressure, distance or binding energy between two molecules), one first records its value Ak at di↵erent times
tk, from which an average can be extracted:

A =
1

M

MX

k=1

Ak (2)
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to show that the velocity as a function of force can be written as:

where w=Fd/kB T is the dimensionless force.  What happens for large forces?  Take the limit 
F —> 0, and give a physical explanation for this form.  How does it compare to diffusion 
without a ratchet mechanism?
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